聯(lián)系電話(huà):
010-5637 0168-696
您現(xiàn)在的位置:首頁(yè) > 技術(shù)文章 > Omni-λ5004i光譜儀:用于液滴捕獲、相變監(jiān)測(cè)和形態(tài)學(xué)研究的單束梯度力氣溶膠光學(xué)鑷的表征
導(dǎo)言
大氣氣溶膠粒子可以吸收和反射太陽(yáng)輻射,被激活成云滴,參與冰核過(guò)程,并為化學(xué)反應(yīng)提供反應(yīng)界面。因此,氣溶膠在空氣污染、大氣化學(xué)和氣候變化中扮演著重要角色。氣溶膠粒子可以有復(fù)雜的組成,包括無(wú)機(jī)、金屬和礦物成分、元素碳和有機(jī)碳,以及一定量的水。氣溶膠粒子還可以有不同的形態(tài)。例如由無(wú)機(jī)鹽和有機(jī)成分組成的氣溶膠粒子可以通過(guò)相變具有固態(tài)、部分吞噬或核-殼以及均一形態(tài)。氣溶膠組成和含水量的變化導(dǎo)致粒子形態(tài)和相態(tài)的演變,同時(shí)改變其他物理化學(xué)性質(zhì),如pH值、極性、界面張力和光化學(xué)。
分享一篇來(lái)自浙江大學(xué)裴祥宇團(tuán)隊(duì)的新研究成果,本文以“Technical note: Characterization of a single-beam gradient force aerosol optical tweezer for droplet trapping, phase transition monitoring, and morphology studies"為題發(fā)表于期刊Atmospheric Chemistry and Physics,浙江大學(xué)裴祥宇老師為共同第一作者。希望對(duì)您的科學(xué)研究或工業(yè)生產(chǎn)帶來(lái)一些靈感和啟發(fā)。
正文
單粒子分析對(duì)于更好地理解顆粒轉(zhuǎn)化過(guò)程及其預(yù)測(cè)環(huán)境影響至關(guān)重要。在本研究中,浙江大學(xué)的裴祥宇老師團(tuán)隊(duì)開(kāi)發(fā)了一種氣溶膠光學(xué)鑷(AOT)拉曼光譜系統(tǒng),用于實(shí)時(shí)研究懸浮氣溶膠滴的相態(tài)和形態(tài)。該系統(tǒng)包括四個(gè)模塊:光學(xué)捕獲、反應(yīng)、照明與成像以及檢測(cè)。光學(xué)捕獲模塊使用532納米激光器和100倍油浸物鏡,在30秒內(nèi)穩(wěn)定捕獲氣溶膠滴。反應(yīng)模塊允許調(diào)整相對(duì)濕度(RH)并引入反應(yīng)氣體進(jìn)入滴懸浮室,促進(jìn)研究液-液相變。照明與成像模塊采用高速攝像機(jī)監(jiān)測(cè)被捕獲的液滴,而檢測(cè)模塊記錄拉曼散射光。裴祥宇老師團(tuán)隊(duì)捕獲了含氯化鈉(NaCl)和3-甲基戊二酸(3-MGA)的混合滴,以檢查RH依賴(lài)的形態(tài)變化。當(dāng)RH降低時(shí),發(fā)生了液-液相分離(LLPS)。此外,作者引入了臭氧和蓖麻油/松節(jié)油來(lái)原位生成二次有機(jī)氣溶膠(SOA)顆粒,這些顆粒與被捕獲的滴碰撞并溶解在其中。為了確定被捕獲滴的特性,作者使用基于Mie理論的開(kāi)源程序,從拉曼光譜中觀(guān)察到的回音壁模式(WGMs)中檢索直徑和折射率。結(jié)果發(fā)現(xiàn),當(dāng)RH降低時(shí),混合滴形成了核-殼形態(tài),由不同SOA前體生成的滴的相變對(duì)RH的依賴(lài)性不同。AOT系統(tǒng)是評(píng)估動(dòng)態(tài)大氣過(guò)程中形態(tài)和相態(tài)的現(xiàn)場(chǎng)實(shí)驗(yàn)平臺(tái)。
圖1.(a) 本研究中使用的氣溶膠光學(xué)鑷裝置示意圖。(b) 滴液粒子懸浮室的設(shè)計(jì)。(c) 系統(tǒng)主要部件的照片,包括懸浮室、水汽發(fā)生器、激光器、攝像機(jī)和卓立漢光公司的Omni-λ5004i光譜儀。
相變確定方法:
當(dāng)一個(gè)透明或弱吸收的球形顆粒被捕獲時(shí),它可以作為一個(gè)高質(zhì)量的光學(xué)腔體,發(fā)生強(qiáng)烈的光學(xué)共振,從而產(chǎn)生增強(qiáng)的拉曼散射。這些共振可以在顆粒的拉曼光譜中觀(guān)察到峰值,通常被稱(chēng)為回音壁效應(yīng)(WGMs)。原則上,可以通過(guò)WGMs推斷出顆粒的形態(tài),因?yàn)檎凵渎手械牟痪鶆蛐詴?huì)破壞WGMs的循環(huán)。WGMs衰減的起源在于顆粒被分離成親水核和疏水殼時(shí)存在的徑向均勻性。因此,當(dāng)使用Mie散射模型擬合均勻液滴的拉曼光譜時(shí),最佳擬合的誤差會(huì)大幅增加。對(duì)提取的半徑和折射率的研究顯示它與均勻球體的擬合之間存在明顯的差異。因此,顆粒大小和折射率發(fā)生顯著變化的點(diǎn)可以作為核殼相分離發(fā)生的點(diǎn)。如下圖所示,當(dāng)液滴部分包裹且非球形時(shí),光譜中的WGM峰值消失??偟膩?lái)說(shuō),單個(gè)液滴在經(jīng)歷形態(tài)轉(zhuǎn)變時(shí)拉曼光譜會(huì)發(fā)生相應(yīng)的動(dòng)態(tài)變化。
圖2. 基于光譜特征識(shí)別滴液形態(tài)的例子。(a) 捕獲的水性NaCl滴的拉曼散射特征圖。(b) 不同滴液形態(tài)的光譜:上子圖顯示了均勻水性飽和NaCl滴的典型光譜。中間子圖顯示了當(dāng)SOA在飽和NaCl滴表面形成薄殼時(shí)的光譜。底部子圖顯示了當(dāng)SOA繼續(xù)在飽和NaCl滴表面凝聚時(shí),WGMs峰值減弱的光譜。(c) WGM分裂時(shí)間序列的例子:紅色峰值逐漸從一分為二,并且強(qiáng)度變?nèi)?,?dāng)SOA被加入到滴中時(shí),表明形成了核-殼形態(tài)。
在實(shí)驗(yàn)過(guò)程中,通常首先捕獲一個(gè)均勻的滴液。隨后,隨著相對(duì)濕度(RH)的降低,滴液可能會(huì)經(jīng)歷相分離,轉(zhuǎn)變成部分吞噬或核-殼形態(tài)。這些轉(zhuǎn)變對(duì)回音壁模式(WGMs)有明顯影響。當(dāng)?shù)我恨D(zhuǎn)變?yōu)椴糠滞淌蔂顟B(tài)時(shí),其對(duì)稱(chēng)結(jié)構(gòu)被破壞,導(dǎo)致WGMs的猝滅。相比之下,當(dāng)?shù)我撼尸F(xiàn)核-殼結(jié)構(gòu)時(shí),由于滴液的徑向均勻性受到干擾,WGMs會(huì)減弱。因此,對(duì)部分吞噬或核-殼滴液應(yīng)用MRSFIT可能會(huì)導(dǎo)致檢索直徑和折射率變得不可信,導(dǎo)致擬合誤差異常高。為了解決這個(gè)問(wèn)題并為核-殼滴液檢索直徑和折射率,作者采用了另一種名為Mie共振殼層擬合(MRSFIT)的程序,由Vennes和Preston開(kāi)發(fā)。MRSFIT專(zhuān)門(mén)設(shè)計(jì)用來(lái)將觀(guān)察到的Mie共振與使用Mie理論預(yù)測(cè)的核-殼顆粒的共振相擬合。MRFIT提供的模式分配指導(dǎo)了核-殼滴液的適當(dāng)參數(shù)選擇。捕獲滴液后,可以從光譜中識(shí)別其形態(tài),如圖2所示的例子。
圖3. (a) 檢索到的直徑(Dp)和折射率(n)。(b) 測(cè)量室內(nèi)前后的相對(duì)濕度(RH)。(c) 捕獲的水性NaCl滴液的拉曼光譜時(shí)間序列
圖2和圖3中的拉曼信號(hào)及數(shù)據(jù)使用卓立漢光公司的Omni-λ5004i光譜儀測(cè)量得到。由于物質(zhì)特殊的結(jié)構(gòu),拉曼散射得到增強(qiáng),使得峰值可在光譜中觀(guān)察到,從而形成回音壁效應(yīng)。而回音壁效應(yīng)的改變情況在此研究中對(duì)于推斷物質(zhì)的形態(tài)有著非常重要的作用,因?yàn)閱蝹€(gè)液滴在經(jīng)歷形態(tài)轉(zhuǎn)變時(shí)拉曼光譜會(huì)發(fā)生相應(yīng)的動(dòng)態(tài)變化,從拉曼光譜的變化中可以分析液滴的相變過(guò)程。
圖4.液-液相分離和NaCl/3-MGA溶液的混合。(a) 通過(guò)WGM擬合獲得的滴液直徑和折射率,藍(lán)點(diǎn)代表滴液直徑,紅點(diǎn)代表折射率。(b) 室內(nèi)相對(duì)濕度(RH)的變化,紅線(xiàn)代表進(jìn)入室內(nèi)前的RH,綠線(xiàn)代表離開(kāi)室內(nèi)后的RH。(c) 時(shí)間分辨的拉曼光譜,WGMs用深紅色標(biāo)記。虛綠線(xiàn)和虛紫線(xiàn)分別表示液-液相分離和液-液相混合的發(fā)生。
圖5. α-蒎烯SOA涂覆在飽和NaCl滴液上的實(shí)驗(yàn)。(a) 使用均勻滴液模型檢索到的滴液直徑(藍(lán)點(diǎn))和折射率(紅點(diǎn)),以及不同時(shí)間點(diǎn)的滴液實(shí)時(shí)圖像。(b) 使用核-殼滴液模型檢索到的殼層直徑(藍(lán)點(diǎn))和核心直徑(紅點(diǎn))。顏色越深,擬合誤差越小。在點(diǎn)狀綠線(xiàn)和點(diǎn)狀紫線(xiàn)之間,藍(lán)點(diǎn)代表殼層直徑,而粉紅點(diǎn)代表核心直徑。(c) 流出室外的氣流的相對(duì)濕度(RH)。(d) 在底部添加了檸檬烯SOA(紫色條),導(dǎo)致形成了核-殼形態(tài)。虛綠線(xiàn)和虛紫線(xiàn)分別表示液-液相分離和液-液相混合的發(fā)生。
總結(jié)
在這項(xiàng)研究中,作者開(kāi)發(fā)并表征了一種新型的單束梯度力氣溶膠AOT系統(tǒng)。建造了一個(gè)具有雙層設(shè)計(jì)的定制滴液粒子懸浮室,提供了修改的多功能性,并實(shí)現(xiàn)了快速液滴捕獲。作者對(duì)這個(gè)AOT系統(tǒng)進(jìn)行了全面的特性表征和性能評(píng)估。AOT系統(tǒng)證明了在30秒內(nèi)高效捕獲微米級(jí)滴液的能力,顯著提高了捕獲效率。此外,室內(nèi)設(shè)計(jì)的靈活性允許通過(guò)改變中間部分氣孔的形狀和大小來(lái)調(diào)整氣流交換率和方向,以滿(mǎn)足特定的實(shí)驗(yàn)要求。為了評(píng)估該懸浮室的性能,作者捕獲了NaCl滴液,并使用MRFIT算法檢索它們的直徑和折射率。實(shí)驗(yàn)獲得的滴液尺寸與理論值非常接近,證實(shí)了懸浮室性能。
此外,作者研究了滴液的相對(duì)濕度(RH)依賴(lài)性形態(tài),使用與3-MGA混合的NaCl滴液來(lái)測(cè)量分離相對(duì)濕度(SRH)和相變相對(duì)濕度(MRH)。作者還在原位生成并向無(wú)機(jī)滴液中添加了α-蒎烯和檸檬烯SOA。實(shí)驗(yàn)中滴液的第二相形成,使作者能夠研究其混溶性和濕度依賴(lài)性形態(tài)。本文的發(fā)現(xiàn)表明,AOT系統(tǒng)可以有效地用于研究典型大氣SOA的物理和化學(xué)性質(zhì)。
浙江大學(xué)裴祥宇老師簡(jiǎn)介
裴祥宇,助理研究員,獲哥德堡大學(xué)化學(xué)博士學(xué)位,2018至2019年于哥德堡大學(xué)從事博士后研究。長(zhǎng)期從事大氣科學(xué)、大氣污染及氣溶膠方面的研究。在國(guó)際有影響力的期刊發(fā)表論文30余篇。
相關(guān)產(chǎn)品推薦
本研究采用的是北京卓立漢光儀器有限公司Omni-λ5004i光譜儀,如需了解該產(chǎn)品,歡迎咨詢(xún)。
免責(zé)聲明
北京卓立漢光儀器有限公司公眾號(hào)所發(fā)布內(nèi)容(含圖片)來(lái)源于原作者提供或原文授權(quán)轉(zhuǎn)載。文章版權(quán)、數(shù)據(jù)及所述觀(guān)點(diǎn)歸原作者原出處所有,北京卓立漢光儀器有限公司發(fā)布及轉(zhuǎn)載目的在于傳遞更多信息及用于網(wǎng)絡(luò)分享。
如果您認(rèn)為本文存在侵權(quán)之處,請(qǐng)與我們聯(lián)系,會(huì)第一時(shí)間及時(shí)處理。我們力求數(shù)據(jù)嚴(yán)謹(jǐn)準(zhǔn)確,如有任何疑問(wèn),敬請(qǐng)讀者不吝賜教。我們也熱忱歡迎您投稿并發(fā)表您的觀(guān)點(diǎn)和見(jiàn)解。
技術(shù)支持:化工儀器網(wǎng) 管理登陸 網(wǎng)站地圖